

MANONMANIAM SUNDARANAR UNIVERSITY -TIRUNELVELI PG PROGRAMMES

OPEN AND DISTANCE LEARNING (ODL) PROGRAMMES

(FOR THOSE WHO JOINED THE PROGRAMMES FROM THE ACADEMIC YEAR 2023-2024 ONWARDS)

M.Sc. Mathematics				
Semester	Course	Title of the Course	Course Code	
IV	Core XI	Functional Analysis	SMAM41	
	Core XII Differential Geometry		SMAM42	
	Elective VI Ring Theory and Lattices		SMAE41	
	Skill Enhancement Course III	Financial Mathematics	SMAS41	
	Project	Project with Viva-Voce	SMAR41	
	Extension Activity		SMAX41	

FUNCTIONAL ANALYSIS

UNIT	Details		
	Banach Spaces:		
Ι	The definition and some examples – Continuous linear transformations		
	– The Hahn-Banach theorem – The natural imbedding of N in N^{**}		
	Chapter 9: Sections 46-49		
	The open mapping theorem – The conjugate of an Operator. The		
П	definition and some simple properties-Orthogonal complements-		
11	Orthonormal sets		
	Chapter 9: Sections 50-54		
	The conjugate space H^* -The adjoint of an operator–self-adjoint operators-		
III	Normal and unitary operators – Projections.		
	Chapter10: Section 55-59		
	Finite-Dimensional Spectral Theory:		
IV	Determinants and the spectrum of an operator –The spectral theorem.		
	Chapter11:Sections 61,62		
	General Preliminaries on Banach Algebras:		
	The definition and some examples - Regular and singular elements -		
\mathbf{V}	Topological divisors of zero – The spectrum – The formula for the		
	spectral radius- The radical and semi-simplicity.		
	Chapter12:Sections64-69		

Recommended Text	G.F. Simmons, Introduction to Topology and Modern Analysis,	
	McGraw Hill Education(India)PrivateLimited,NewDelhi,1963.	

DIFFERENTIAL GEOMETRY

UNIT	Details
	Space curves: Definition of a space curve – Arc length – tangent–normal
I	and binormal -curvature and torsion -contact between curves and
L	surfaces- tangent surface- involutes and evolutes- Intrinsic equations -
	Fundamental Existence Theorem for space curves- Helies.
	Chapter I: Sections 1 to 9.
	Intrinsic properties of a surface: Definition of a surface – curves on a
	surface – Surface of revolution – Helicoids – Metric- Direction
II	coefficients - families of curves- Isometric correspondence- Intrinsic
	properties.
	Chapter II: Sections 1 to 9.
	Geodesics: Geodesics – Canonical geodesic equations – Normal property
	of geodesics- Existence Theorems - Geodesic parallels - Geodesics
III	curvature- Gauss- Bonnet Theorem – Gaussian curvature- surface of
	constant curvature.
	Chapter II: Sections 10 to 18.
	Non Intrinsic properties of a surface: The second fundamental form-
	Principal curvature – Lines of curvature – Developable –Developable
IV	associated with space curves and with curves on surface - Minimal
	surfaces – Ruled surfaces.
	Chapter III: Sections 1 to 8.
	Differential Geometry of Surfaces :Compact surfaces whose points are
	umblics- Hilbert's lemma - Compact surface of constant curvature -
V	Complete surface and their characterization – Hilbert's Theorem –
	Conjugate points on geodesics.
	Chapter IV: Sections 1 to 8

Recommended Text	T.J.Willmore,	An	Introduction	to	Differential	Geometry,	Oxford
	University Pres	ss,(17	^{7thImpression)N}	New!	Delhi2002.(In	dian Print)	

RING THEORY AND LATTICES

UNIT	Details
T	Ring Homomorphisms – Ideals and Quotient Rings – More Ideals and
Quotient Rings – The field of Quotients of an Integral Domain	
	Sections: 3.3 – 3.6
II	Euclidean Rings – A Particular Euclidean Ring.
11	Text 1: Sections: 3.7 and 3.8
	Polynomial Rings – Polynomials over Rational Field – Polynomial Rings
III	over Commutative Rings
	Text1: Sections:3.9 – 3.11.
	Certain Radical sofa Ring –Jacobson Radical of a Ring –Semi simple Ring
IV	– Nil Radical
	Text2: Chapter 8: Definition 8.1 – Theorem 8.10.
	Partially Ordered sets and Lattices- Distributivity and Modularity- The
V	theorem of Jordan Holder - Boolean Algebra
	Text 3: Chapter 8 Sections 8.1-8.3 & 8.5

Recommended Text	1.	TopicsinAlgebra,I.N.Herstein,2 nd Edition,WileyStudentedition
	2.	A first Course in Rings and Ideals, David M. Burton, Addison -
		Wesley Publishing Company.
	3.	Basic Algebra 1 Nathan Jacbson Yale University, W.H.Freeman
		and company. New York, 2 nd Edition

Financial Mathematics

UNIT	Details
Ι	Probability and Normal Random Variables
II	Brownian Motion and Geometric Brownian Motion
III	Interest Rate and Present Value Analysis
IV	Pricing Contracts via Arbitrage
V	The Arbitrage Theorem

Recommended	Sheldon M. Ross, An Introduction to Mathematical
Text	Finance : Options and Other Topics, Second Edition,
	Cambridge University Press, First published2002.